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Tumor susceptibility gene 101 (TSG101) encodes a host cellular protein that is appropriated by human
immunodeficiency virus type 1 (HIV-1) in the budding process of viral particles from infected cells. Variation
in the coding or noncoding regions of the gene could potentially affect the degree of TSG101-mediated release
of viral particles. While the coding regions of the gene were found to lack nonsynonymous variants, two
polymorphic sites in the TSG101 5� area were identified that were associated with the rate of AIDS progression
among Caucasians. These single-nucleotide polymorphisms (SNPs), located at positions �183 and �181
relative to the translation start, specify three haplotypes termed A, B, and C, which occur at frequencies of 67%,
21%, and 12%, respectively. Haplotype C is associated with relatively rapid AIDS progression, while haplotype
B is associated with slower disease progression. Both effects were dominant over the intermediate haplotype A.
The haplotypes also demonstrated parallel effects on the rate of CD4 T-cell depletion and viral load increase
over time, as well as a possible influence on HIV-1 infection. The data raise the hypothesis that noncoding
variation in TSG101 affects the efficiency of TSG101-mediated release of viral particles from infected cells,
thereby altering levels of plasma viral load and subsequent disease progression.

One fundamental feature of a successful virus is its ability to
utilize the host cellular machinery in order to support its prop-
agation. Understanding the interactions between host and viral
proteins provides the opportunity to identify means for con-
trolling outcomes of viral infection. Recent studies have dis-
closed a variety of cellular molecules that are exploited by
human immunodeficiency virus type 1 (HIV-1) at different
stages of its life cycle, one of which, the tumor suppressor gene
101 (TSG101) protein, is essential for budding of the virus
from infected cells (10, 12, 21, 35).

TSG101 is an evolutionarily conserved gene located on hu-
man chromosome 11p15. It encodes a 46-kDa multidomain
protein that contains an N-terminal ubiquitin-conjugating en-
zyme E2 variant (UEV) domain, a proline-rich domain, a
coiled-coil region including a leucine zipper, and a C-terminal
�-helical domain. The TSG101 protein has been detected in

the nucleus and cytoplasm, and its localization is cell cycle
dependent (38, 39).

A potential role for TSG101 as a tumor suppressor that
was suggested in an early study of the gene (17) remains
controversial (22, 34). Identification of molecules with
which TSG101 interacts has suggested its involvement in
transcriptional regulation (5, 13, 24, 32) and cell cycle con-
trol (6, 18, 27). Targeted deletion of tsg101 in mice results in
early embryonic death due to a defect in cellular prolifera-
tion (29), and reports of cell cycle arrest and death in
TSG101-deficient cells have further confirmed a critical role
for TSG101 in cell survival (6, 16).

Many recent studies of TSG101 have focused on its role in
endosomal trafficking. TSG101 and its yeast orthologue,
Vps23, belong to the so-called “class E” proteins whose func-
tions are essential for vacuolar protein sorting (1). TSG101/
Vps23, along with two other proteins, Vps28 and Vps37, form
a �350-kDa complex named ESCRT-I (endosomal sorting
complex required for transport) (14). ESCRT-I is involved in a
series of protein-protein interactions that result in sorting of
ubiquitylated proteins from early endosomes into multivesicu-
lar bodies (MVBs). During this process, early endosomes car-
rying protein cargo bud into MVBs, organelles that eventually
fuse with lysosomes for subsequent protein degradation. This
process entails direct binding of the TSG101/Vps23 UEV do-
main to ubiquitin, resulting in the delivery of ubiquitylated
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proteins (that are destined for degradation) into MVBs (2, 12,
14, 20, 28, 33).

Some viruses have developed an ingenious mechanism for
budding from cells that involves the host endosomal sorting
process. This became evident after the discovery of the direct
interaction between the UEV domain of TSG101 and a highly
conserved motif in the p6 region of the HIV-1 Gag protein,
Pro-Thr/Ser-Ala-Pro (PTAP), an interaction that was shown to
be critical for the release of HIV-1 particles from the cellular
membrane (10, 12, 21, 35). The HIV-1 PTAP motif belongs to
a family of late (L) domains, so named for their late involve-
ment in the viral life cycle. The viral L domains are also
characterized by conserved PPXY and YXXL motifs, which,
along with PTAP, interact with host proteins involved in the
MVB pathway (reviewed in reference 9). The TSG101–HIV-1
relationship has been studied intensively by several laborato-
ries, resulting in the identification of additional host proteins
involved in the process of HIV-1 budding (30, 31, 36). The
TSG101 molecule has also been shown to be involved in the
budding of HIV-2 (25), Ebola virus (21), human T-cell leuke-
mia virus type 1 (4), and bluetongue virus (37).

Given the central role of TSG101 in release of HIV-1 from
infected cells, we hypothesized that genetic variations in TSG101
could potentially affect the functional activity of TSG101 protein
in viral budding, thereby altering levels of circulating virus in the
blood of infected individuals and the clinical course of AIDS.
Here, we report two single-nucleotide polymorphism (SNP)
variants, located at positions �183 and �181 relative to the
translation start site, that associate with differences in viral
load dynamics, in CD4 T-cell decline, and, correspondingly,
with the rate of AIDS progression after infection. The �183
variant has been recently reported to be associated with faster
CD4 decline in the Swiss HIV Cohort Study (SHCS) (3). Here,
we demonstrate a more detailed analysis of the association
between TSG101 variation and several outcomes of HIV-1
infection, which are consistent in the SHCS and a large sample
of U.S. AIDS cohorts.

MATERIALS AND METHODS

Subjects. The study group included patients from five U.S. cohorts and a Swiss
cohort: the AIDS Linked to the Intravenous Drug Experience Study, the He-
mophilia Growth and Development Study, the Multicenter AIDS Cohort Study
(MACS), the Multicenter Hemophilia Cohort Study, the San Francisco City
Clinic Cohort Study (26), and the SHCS (http://www.shcs.ch). The seroconver-
sion date was estimated as the midpoint between the first positive and the last
negative HIV-1 antibody test (mean interval, 0.79 years; range, 0.07 to 3.0 years).
High-risk exposed uninfected subjects were defined as those who reported en-
gaging in behavior that confers high risk for HIV-1 exposure (continual sharing
of injection equipment or anal receptive sex with multiple partners) or transfu-
sions with factor VIII known to be contaminated with HIV-1. Longitudinal CD4
count values were available for MACS and SHCS, whereas viral load measure-
ments were available only for the MACS cohort.

Genotyping. The single-strand conformation polymorphism technique was
performed as described by Cullen et al. (8). The TSG101 SNPs were typed using
TaqMan Genotyping Assays (Applied Biosystems, Foster City, CA) according to
the manufacturer’s protocol. Haplotypes were estimated in compound heterozy-
gotes using the expectation maximization algorithm (19) and SAS software (SAS
Institute, Cary, NC).

Statistical analysis. Four end points reflecting disease progression (AIDS
outcome) were evaluated: time to CD4 � 200 cells/mm3; progression to AIDS
according to the 1987 definition by the Centers for Disease Control and Preven-
tion; progression to AIDS according to the 1993 definition by CDC; and AIDS-
related death. Defined categorical analysis was performed comparing genotype
and haplotype frequencies between groups of patients using a two-tailed Fisher’s

exact test. Analyses presented (see Tables1 to 3, Fig. 2, and tables in the sup-
plemental material) were carried out using the SAS software. Participants were
stratified by ethnic group, sex, and age at seroconversion (0 to 20, 20 to 40, and
over 40 years).

CD4 decline (see Fig. 3) and HIV RNA increase (see Fig. 4) over time were
assessed with random effects linear models in which the intercepts were allowed
to vary randomly for each participant. These models accounted for the correla-
tion between serial measurements from each person and were implemented
using the lme 4 package in R (http://www.r-project.org/). The three genotypic
categories were included as indicator variables in the models, and both the
intercepts and slopes were estimated. These models were adjusted by age, race,
and injecting drug use reported at either seroconversion or when CD4 fell
between 500 and 600 cells/mm3 for MACS and SHCS, respectively. All CD4 and
HIV RNA data were collected prior to report of highly active antiretroviral
therapy use. For MACS patients included in these analyses, the seroconversion
date was identified within a 2-year window. For over 90% of the 380 men
included in the CD4 decline analysis, the seroconversion was known within a
1-year interval (median [interquartile range] � 0.51 [0.48 to 0.58] years).

RESULTS

Identification of TSG101 SNPs and haplotypes. An initial
screening of the TSG101 coding region in 50 healthy Caucasian
blood donors using the single-strand conformation polymor-
phism technique indicated the highly conserved nature of the
gene, since no nonsynonymous nucleotide changes were iden-
tified. Sequencing of 79 randomly chosen Caucasian serocon-
verter patients (U.S. AIDS cohorts) was then performed in the
5� area of the gene, which is likely to contain regulatory se-
quences. The sequenced fragment consisted of �2 kb around
exon 1, where nine SNPs were identified (Fig. 1A). Analysis of
the SNP genotypes revealed six haplotypes with estimated fre-
quencies of �1% that could be defined by four haplotype-
tagging SNPs (Fig. 1B) (positions �600 [rs3802966], �518
[rs1857909], �183 [rs2292179], and �181 [rs1395319] relative
to the translation start site.

Analysis of TSG101 variants in the AIDS cohorts. The four
TSG101 haplotype-tagging SNPs located in the 5� area were
typed in the U.S. AIDS cohorts. Haplotypes based on the four
SNPs were estimated in a large population of 1,895 Caucasian
individuals (Fig. 1C). The frequencies of the haplotypes in
Caucasians differed only slightly from the initial estimation in
79 individuals (Fig. 1B).

The association of the individual SNPs and the five related
haplotypes with disease progression was tested using the Cox
proportional hazards model (7) and categorical analysis in
which frequencies of genotypes were compared in people who
developed AIDS during certain time periods. The Cox model
did not reveal any significant effect for the four individual SNPs
or for the five haplotypes (see Tables S1 and S2 in the supple-
mental material). However, we did observe differences in the
frequencies of the �600G and �183C variants among individ-
uals who developed AIDS before 7 years compared to those
who developed AIDS later (see Table S3 in the supplemental
material). In similar analyses, haplotype 2 conferred a suscep-
tible effect (odds ratio [OR] � 1.6 to 2.5; P � 0.002 to 0.01),
haplotypes 3 and 5 were protective (OR � 0.6 to 0.8, P � 0.007
to 0.2, and OR � 0.5 to 0.8, P � 0.06 to 0.5), while haplotype
4 was relatively neutral (OR � 0.8 to 1.1; P � 0.2 to 0.8)
compared to a reference haplotype 1 (see Table S4 in the
supplemental material). Of note, the �600G variant, which is
in strong linkage disequilibrium (LD) with the �183T and
�181C variants, specifies haplotype 3, and the protective effect
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of this haplotype corresponded to the effect of the individual
SNP. Based on these data and the haplotype structures, we
concluded that susceptibility and protection are associated
with variation at positions �183 and �181. Three of the four
possible haplotypes composed of these two SNPs were ob-
served, indicating strong LD between the variants. The corre-
sponding haplotypes, T-A, T-C, and C-C, were termed A, B,
and C, respectively (Fig. 1D).

Haplotypes B and C are associated with different rates of
AIDS progression. The frequencies of haplotypes A, B, and C
among individuals who developed AIDS in one of six distinct
time periods after seroconversion (�3, 3 to 5, 5 to 7, 7 to 10,
10 to 12, and �12 years) were compared (data not shown). In

this analysis, seroprevalent individuals were included in the last
three groups depending on the date of an AIDS-defining out-
come after their first HIV� visit. This analysis suggested that
the effect of the TSG101 haplotypes on HIV disease is not
gradual over time, an observation that was further elucidated
by the absence of a significant effect of these variants on AIDS
progression in survival analysis using the Cox model, where
time is a continuous variable starting from seroconversion (see
Table S5 in the supplemental material). Rather, differences in
susceptible (C) and protective (B) haplotypic frequencies ap-
peared somewhat bimodal in that the frequency of the susceptible
haplotypic group was significantly greater among individuals who
progressed to AIDS within 7 years after seroconversion relative
to those who remained AIDS-free for at least 7 years (domi-
nant model; OR � 1.72 to 2.30; P � 0.0001 to 0.002) (Table 1).
Conversely, the protective haplotypes were observed signifi-
cantly more frequently among those who remained AIDS free
for 7 years or longer after seroconversion compared to those
who had progressed within 7 years (dominant model; OR �
0.56 to 0.64; P � 0.0005 to 0.01). Both the B and C haplotypes
appeared to have dominant effects, since a codominant model
did not fit the data as well as a dominant model. Haplotype A
was relatively neutral (Table 1).

Protective, susceptible, and neutral TSG101 haplotype groups.
Haplotypes B and C exhibited opposite dominant effects over
the neutral haplotype A (Table 1), so it follows that the hap-
logenotypes A/B and B/B would both be protective, and A/C
and C/C would both confer susceptibility in terms of AIDS
progression before or after 7 years after seroconversion. We
hypothesized that the dominant effects of haplotypes B and C
would result in a neutral phenotype among B/C heterozygotes
similar to the A/A haplogenotype. Thus, the three nonoverlap-
ping groups based on genotypic data were tested for their
effects on AIDS progression. As expected, the A/C-C/C group-
ing showed a strong susceptible effect (OR � 1.74 to 2.61; P �
�0.0001 to 0.003), A/B-B/B associated with protection (OR �FIG. 1. SNPs and the corresponding haplotypes observed in the 5�

area of TSG101. (A) Schematic map of the nine SNPs identified in the
5� area of TSG101. SNP positions are determined relative to the “A”
nucleotide of the ATG start codon, which is shown within exon 1
(black box). (B) Haplotypes based on the nine SNPs. The haplotype
frequencies were estimated based on sequencing data among 79 ran-
domly chosen Caucasian seroconverters. Only haplotypes with fre-
quencies of �0.01 are listed. Alleles with minor frequencies are shown
in boldface. F, frequency, CI, confidence interval. (C) Haplotypes
based on four SNPs estimated in 1,895 Caucasian individuals. (D) Struc-
ture and frequencies of haplotypes A, B, and C estimated in 2,071
Caucasian individuals.

TABLE 1. Effects of TSG101 haplotypes on AIDS progression
among Caucasians from the combined U.S. AIDS

cohorts (dominant model)

Haplotype AIDS
outcome

No.a of fast
progressorsb (F)

No.a of slow
progressors c (F) OR P value

A CD4 � 200 218 (0.88) 637 (0.89) 0.94 0.71
AIDS-1993 245 (0.87) 775 (0.89) 0.91 0.54
AIDS-1987 132 (0.86) 995 (0.88) 1.06 0.80
Death 92 (0.90) 1169 (0.88) 1.19 0.41

B CD4 � 200 74 (0.30) 286 (0.40) 0.64 0.005
AIDS-1993 82 (0.29) 353 (0.41) 0.60 0.0005
AIDS-1987 44 (0.29) 451 (0.40) 0.60 0.006
Death 27 (0.26) 523 (0.39) 0.56 0.01

C CD4 � 200 77 (0.31) 145 (0.20) 1.78 0.0006
AIDS-1993 89 (0.32) 184 (0.21) 1.72 0.0005
AIDS-1987 52 (0.34) 251 (0.22) 1.78 0.002
Death 40 (0.39) 291 (0.22) 2.30 0.0001

a Numbers of individuals who had at least one of the corresponding haplotypes
(dominant model).

b Seroconverter patients who progressed to an AIDS outcome in �7 years
after HIV-1 infection.

c Patients who avoided an AIDS outcome for �7 years after HIV-1 infection
(seroconverters and seroprevalent individuals).
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0.51 to 0.61; P � �0.0001 to 0.01), and the A/A-B/C grouping
appeared neutral (Table 2). The protective and susceptible
haplotype groups were further compared to the neutral group
by the Cox proportional-hazards model (Fig. 2). The relative

shapes of the curves in the Kaplan-Meier plots confirm that the
effects of the TSG101 variants are not constant over time, but
rather occur most obviously between about 4 and 12 years after
seroconversion.

FIG. 2. Kaplan-Meier plots for the three TSG101 haplotypic groups. Four AIDS outcomes were analyzed using the Cox proportional-hazards
model.

TABLE 2. TSG101 haplogenotypes and AIDS progression among Caucasians from the combined U.S. AIDS cohorts

Haplogenotype AIDS outcome No.a of fast
progressorsb (F)

No.a of slow
progressorsc (F) OR P value

Neutral (A/A or B/C) CD4 � 200 133 (0.54) 357 (0.50) 1.17 0.30
AIDS-1993 147 (0.52) 426 (0.49) 1.14 0.37
AIDS-1987 72 (0.47) 560 (0.50) 0.89 0.55
Death 47 (0.46) 668 (0.50) 0.85 0.47

Protective (A/B or B/B) CD4 � 200 56 (0.23) 251 (0.35) 0.54 0.0003
AIDS-1993 64 (0.23) 307 (0.35) 0.54 �0.0001
AIDS-1987 37 (0.24) 384 (0.34) 0.61 0.01
Death 21 (0.21) 447 (0.34) 0.51 0.006

Susceptible (A/C or C/C) CD4 � 200 59 (0.24) 109 (0.15) 1.74 0.003
AIDS-1993 71 (0.25) 137 (0.16) 1.80 0.0005
AIDS-1987 45 (0.29) 183 (0.16) 2.13 0.0002
Death 34 (0.33) 214 (0.16) 2.61 �0.0001

a Numbers of individuals who had at least one of the corresponding haplotypes (dominant model).
b Seroconverter patients who progressed to an AIDS outcome in �7 years after HIV-1 infection.
c Patients who avoided an AIDS outcome for �7 years after HIV-1 infection (seroconverters and seroprevalent individuals).
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Individuals from different TSG101 haplotype groups exhibit
different rates of CD4� T-cell decline. The availability of lon-
gitudinal CD4 T-cell counts in two of our AIDS cohorts, the
MACS and the SHCS (http://www.shcs.ch), provided the op-
portunity to determine whether the influence of TSG101 vari-
ants on AIDS progression might involve differential rates of
CD4 T-cell decline. CD4 measurements over time were plot-
ted, and the slopes of the fitted lines were compared between
the three genotypic groups. For 380 MACS patients, CD4
T-cell decline was estimated from measurements obtained over
a period of 13 years since seroconversion (Fig. 3A). An average
of 12.9 CD4 measurements per individual, ranging from 2 to

32, was considered in the analysis. The SHCS cohort primarily
consisted of seroprevalent individuals, so in this case, CD4
T-cell decline was measured over a period of 10 years starting
at the point where CD4 counts fell in the range of 500 to 600
cells/mm3 (Fig. 3B). For 310 SHCS patients, an average of 11.5
CD4 T-cell count data points (ranging from 2 to 52) per indi-
vidual were available for analysis. In both cohorts, the effects of
the three genotypic groups on CD4 T-cell decline corre-
sponded to the effects these genotypes had on AIDS progres-
sion, where the decline was progressively steeper in the follow-
ing order: A/C-C/C (susceptible group) � A/A-B/C (neutral
group) � A/B-B/B (protective group) (Fig. 3). Differences in
CD4 T-cell decline between the protective and susceptible
groups were highly significant in both cohorts (P � �0.0001 to
0.0002).

Effects of the TSG101 haplotypes on viral load increase over
time. Given the central role of TSG101 in HIV-1 budding and
the known correlation between the viral load and the rate of
AIDS progression (23), we tested whether the effect of
TSG101 variation on CD4 T-cell decline and AIDS progres-
sion was also reflected in viral load changes over time. For this
analysis, the increase in viral load over time among 373 MACS
patients was measured, stratified by the three TSG101 geno-
typic groups (Fig. 4). An average of 9.6 measurements (ranging
from 2 to 28 measurements) of viral load per patient over a
period of 13 years since seroconversion were available for the
analysis. No significant difference in HIV-1 RNA levels be-
tween the three genotypic groups was observed at the time of
seroconversion. Strikingly, however, highly significant differ-
ences in log10 HIV-1 RNA slopes were observed between the
protective and susceptible groups (P � 0.0001), strongly sug-
gesting that variation in the TSG101 gene affects the HIV-1
viral load, potentially through the differential efficiency of
TSG101 variants to mediate viral budding.

TSG101 genotypes and HIV-1 infection. The TSG101 geno-
typic groups were also tested for potential effects on HIV-1

FIG. 3. Decline in CD4 T-cell count among AIDS patients with
different TSG101 haplogenotypes. The data were analyzed using a
random-effects linear model (see Materials and Methods). (A) Square-
root CD4 counts for 380 individuals from the MACS cohort were
plotted as a function of time from seroconversion, and fitted lines for
each genotype group were generated based on 4,918 measurements.
Slopes for protective, neutral, and susceptible genotypic groups are as
follows (95% CI in parentheses): �1.11 (�1.22, �1.00), �1.33 (�1.42,
�1.25), and �1.39 (�1.50, �1.27), respectively. (B) CD4 data from
the SHCS patients were plotted starting from the point at which CD4
cell counts fell in the range of 500 to 600 cells/mm3. By chance, the
susceptible haplogenotypic group had a mean CD4 count that was
higher in this range than that of the protective or neutral group. The
fitted lines are based on 3,551 measurements for 310 people. Slopes
(95% CI) for protective, neutral, and susceptible groups are �0.52
(�0.64, �0.39), �0.57 (�0.69, �0.47), and �0.81 (�0.99, �0.64),
respectively.

FIG. 4. Viral-load increase over time in 373 MACS patients. Fitted
lines for the three TSG101 genotypic groups were constructed based
on 3,569 measurements of log10 HIV RNA over time after serocon-
version. Statistical analysis was performed using the multivariate ran-
dom-effects linear model (see Materials and Methods). The best-fit
lines for the protective, neutral, and susceptible haplogenotypic groups
have slopes (95% CI) of 0.01 (�0.01, 0.02), 0.04 (0.03, 0.05), and 0.05
(0.04, 0.07), respectively.
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infection by comparing the distributions of these genotypes in
HIV� patients with those in seronegative or high-risk exposed
uninfected individuals. Although only marginally significant
values (P � 0.02 to 0.08) were determined (Table 3), the effects
of these genotypes on HIV-1 infection each paralleled their
respective effects on the viral load, on CD4 T-cell decline, and
on the rate of progression to AIDS.

DISCUSSION

The consistent protective (haplotype B) and susceptible
(haplotype C) influences of TSG101 haplotypes on multiple
outcomes after HIV-1 exposure, including longitudinal viral
load levels, CD4� T-cell decline, and subsequent disease pro-
gression, as well as a moderate effect on HIV-1 infection,
support a physiological role for genetic variation near/within
the TSG101 gene in HIV-1 pathogenesis. Whether the (�183,
�181) haplotypic variants have a direct effect on these out-
comes remains in question. We did not find any nonsynony-
mous polymorphisms or 3� untranslated region SNPs linked to
the �183, �181 variants that could explain the observed effects
of these variants on HIV-1 disease. Further, the (�183, �181)
haplogenotypes did not show any significant difference in the
levels of TSG101 mRNA transcription in peripheral blood
lymphocytes or purified CD4 cells as tested by real-time PCR,
and no differences were observed in promoter activity using
reporter constructs (data not shown). Likewise, no alterna-
tively spliced forms of TSG101 mRNA associating with the
genotypes were observed, negating splice variation as the un-
derlying mechanism of the associations described. Although
we were not able to detect an influence of the TSG101 haplo-
types on gene transcription or mRNA splicing, we cannot rule
out the possibility that the TSG101 SNPs may affect transcrip-
tion/splicing under specific physiological conditions.

The protective and susceptible effects of TSG101 haplotypes
on AIDS progression are not constant over time, as indicated
by the Kaplan-Meier curves (Fig. 2). The relative shapes of the
curves suggest that TSG101 variation has little or no effect
during the early (�4 years) and late (�12 years) stages of
infection, but rather, only at an intermediate time period.
Other host genetic, viral, or environmental factors that affect
disease progression during the early and late stages of infection
may override effects of TSG101. Alternatively, the TSG101
interaction with HIV and/or consequences of this interaction
could be different during these two extreme time intervals
compared with the intermediate period. However, the effects
of TSG101 haplotypes occurring during the intermediate time

interval were strong enough to be evident when the entire
patient cohort was used in the categorical analysis, as well as
the longitudinal analyses of CD4 T-cell decline and viral-load
increase.

Recently, the �183 variant, corresponding to haplotype C,
was shown to associate with lower virus production ex vivo, a
paradoxical finding given its association with faster CD4 T-cell
decline (3) and susceptibility to AIDS reported here. Although
this finding appears to contradict the genetic epidemiological
findings presented here, the ex vivo assay may not be physio-
logically relevant to the described effect of TSG101 on AIDS
progression given its time dependence as discussed above.

The HapMap genotype data (http://www.hapmap.org) sug-
gest that TSG101 is located in a region of strong LD: the
corresponding haplotype block defined according to Gabriel et
al. (11) spans 118 kb. This block includes the entire TSG101
gene; its partial paralogue, UEV-3 (15); and two additional
gene fragments (the lactate dehydrogenase A-like 6A gene
[GenBank accession no. NM144972] and a computationally
predicted gene that may encode a protein similar to the mito-
chondrial carrier homolog 1 [XM497268]). Therefore, the
(�183, �181) haplogenotypes may mark the true disease vari-
ant(s) through LD. In support of this, no effect on disease
progression was detected in a smaller sample of African-Amer-
ican seroconverters (although longitudinal CD4 and viral-load
data from these individuals were not available for analysis;
also, the susceptible haplotype group was observed at a fre-
quency of only 4%). However, given the requirement of
TSG101 for HIV-1 budding in vitro, it seems likely that the
effect described herein is due to variation in TSG101 and not
to polymorphism in a neighboring locus. If so, this study rep-
resents the first genetic epidemiological evidence to support
previous in vitro studies indicating a primary role for TSG101
in HIV-1 pathogenesis.
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